Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
3.
Nat Methods ; 19(12): 1622-1633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424441

RESUMO

Tissue function depends on cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcriptional data on cells that are isolated from specific spatial locations under image guidance, thus preserving the spatial information of the target cells. It is compatible with in situ and in vivo imaging and can document the temporal and dynamic history of the cells being analyzed. Cell samples are isolated from intact tissue and processed with state-of-the-art library preparation protocols. The technique therefore combines spatial information with highly sensitive RNA sequencing readouts from individual, intact cells. We have used both high-throughput, droplet-based sequencing as well as SMARTseq-v4 library preparation to demonstrate its application to bone marrow and leukemia biology. We discovered that DPP4 is a highly upregulated gene during early progression of acute myeloid leukemia and that it marks a more proliferative subpopulation that is confined to specific bone marrow microenvironments. Furthermore, the ability of Image-seq to isolate viable, intact cells should make it compatible with a range of downstream single-cell analysis tools including multi-omics protocols.


Assuntos
Diagnóstico por Imagem , Leucemia , Humanos , Análise de Sequência de RNA , Contagem de Células , Biblioteca Gênica , Microambiente Tumoral
4.
Biomed Opt Express ; 13(2): 662-675, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35284159

RESUMO

Multimode optical fibers (MMF) have shown considerable potential for minimally invasive diffraction-limited fluorescence imaging of deep brain regions owing to their small size. They also look to be suitable for imaging across long time periods, with repeated measurements performed within the same brain region, which is useful to assess the role of synapses in normal brain function and neurological disease. However, the approach is not without challenge. Prior to imaging, light propagation through a MMF must be characterized in a calibration procedure. Manual repositioning, as required for repeated imaging, renders this calibration invalid. In this study, we provide a two-step solution to the problem consisting of (1) a custom headplate enabling precise reinsertion of the MMF implant achieving low-quality focusing and (2) sensorless adaptive optics to correct translational shifts in the MMF position enabling generation of high-quality imaging foci. We show that this approach achieves fluorescence imaging after repeated removal and reinsertion of a MMF.

5.
Opt Express ; 29(22): 36660-36674, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809072

RESUMO

Rapid autofocusing over long distances is critical for tracking 3D topological variations and sample motion in real time. Taking advantage of a deformable mirror and Shack-Hartmann wavefront sensor, remote focusing can permit fast axial scanning with simultaneous correction of system-induced aberrations. Here, we report an autofocusing technique that combines remote focusing with sequence-dependent learning via a bidirectional long short term memory network. A 120 µm autofocusing range was achieved in a compact reflectance confocal microscope both in air and in refractive-index-mismatched media, with similar performance under arbitrary-thickness liquid layers up to 1 mm. The technique was validated on sample types not used for network training, as well as for tracking of continuous axial motion. These results demonstrate that the proposed technique is suitable for real-time aberration-free autofocusing over a large axial range, and provides unique advantages for biomedical, holographic and other related applications.


Assuntos
Processamento de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional/métodos , Microscopia Confocal/instrumentação , Animais , Sistemas Computacionais , Camundongos
6.
Artigo em Inglês | MEDLINE | ID: mdl-35252878

RESUMO

Adaptive optics (AO) is a technique that corrects for optical aberrations. It was originally proposed to correct for the blurring effect of atmospheric turbulence on images in ground-based telescopes and was instrumental in the work that resulted in the Nobel prize-winning discovery of a supermassive compact object at the centre of our galaxy. When AO is used to correct for the eye's imperfect optics, retinal changes at the cellular level can be detected, allowing us to study the operation of the visual system and to assess ocular health in the microscopic domain. By correcting for sample-induced blur in microscopy, AO has pushed the boundaries of imaging in thick tissue specimens, such as when observing neuronal processes in the brain. In this primer, we focus on the application of AO for high-resolution imaging in astronomy, vision science and microscopy. We begin with an overview of the general principles of AO and its main components, which include methods to measure the aberrations, devices for aberration correction, and how these components are linked in operation. We present results and applications from each field along with reproducibility considerations and limitations. Finally, we discuss future directions.

7.
Opt Lett ; 45(24): 6599-6602, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325849

RESUMO

Multimode optical fibers (MMFs), combined with wavefront control methods, have achieved minimally invasive in vivo imaging of neurons in deep-brain regions with diffraction-limited spatial resolution. Here, we report a method for volumetric two-photon fluorescence imaging with a MMF-based system requiring a single transmission matrix measurement. Central to this method is the use of a laser source able to generate both continuous wave light and femtosecond pulses. The chromatic dispersion of pulses generated an axially elongated excitation focus, which we used to demonstrate volumetric imaging of neurons and their dendrites in live rat brain slices through a 60 µm core MMF.


Assuntos
Hipocampo/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/citologia , Fibras Ópticas , Imagem Óptica/instrumentação , Animais , Desenho de Equipamento , Masculino , Ratos , Ratos Wistar
8.
Biomed Opt Express ; 11(8): 4759-4771, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923076

RESUMO

Focusing light through a step-index multimode optical fiber (MMF) using wavefront control enables minimally-invasive endoscopy of biological tissue. The point spread function (PSF) of such an imaging system is spatially variant, and this variation limits compensation for blurring using most deconvolution algorithms as they require a uniform PSF. However, modeling the spatially variant PSF into a series of spatially invariant PSFs re-opens the possibility of deconvolution. To achieve this we developed svmPSF: an open-source Java-based framework compatible with ImageJ. The approach takes a series of point response measurements across the field-of-view (FOV) and applies principal component analysis to the measurements' co-variance matrix to generate a PSF model. By combining the svmPSF output with a modified Richardson-Lucy deconvolution algorithm, we were able to deblur and regularize fluorescence images of beads and live neurons acquired with a MMF, and thus effectively increasing the FOV.

9.
Biomed Opt Express ; 11(8): 4772-4785, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923077

RESUMO

Visual guidance at the cellular level during neurosurgical procedures is essential for complete tumour resection. We present a compact reflectance confocal microscope with a 20 mm working distance that provided <1.2 µm spatial resolution over a 600 µm × 600 µm field of view in the near-infrared region. A physical footprint of 200 mm × 550 mm was achieved using only standard off-the-shelf components. Theoretical performance of the optical design was first evaluated via commercial Zemax software. Then three specimens from rodents: fixed brain, frozen calvaria and live hippocampal slices, were used to experimentally assess system capability and robustness. Results show great potential for the proposed system to be translated into use as a next generation label-free and contactless neurosurgical microscope.

10.
Sci Adv ; 6(19): eaaz3870, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494711

RESUMO

Optical microscopy, owing to its noninvasiveness and subcellular resolution, enables in vivo visualization of neuronal structure and function in the physiological context. Optical-sectioning structured illumination microscopy (OS-SIM) is a widefield fluorescence imaging technique that uses structured illumination patterns to encode in-focus structures and optically sections 3D samples. However, its application to in vivo imaging has been limited. In this study, we optimized OS-SIM for in vivo neural imaging. We modified OS-SIM reconstruction algorithms to improve signal-to-noise ratio and correct motion-induced artifacts in live samples. Incorporating an adaptive optics (AO) module to OS-SIM, we found that correcting sample-induced optical aberrations was essential for achieving accurate structural and functional characterizations in vivo. With AO OS-SIM, we demonstrated fast, high-resolution in vivo imaging with optical sectioning for structural imaging of mouse cortical neurons and zebrafish larval motor neurons, and functional imaging of quantal synaptic transmission at Drosophila larval neuromuscular junctions.

11.
Nature ; 578(7794): 278-283, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025033

RESUMO

The biology of haematopoietic stem cells (HSCs) has predominantly been studied under transplantation conditions1,2. It has been particularly challenging to study dynamic HSC behaviour, given that the visualization of HSCs in the native niche in live animals has not, to our knowledge, been achieved. Here we describe a dual genetic strategy in mice that restricts reporter labelling to a subset of the most quiescent long-term HSCs (LT-HSCs) and that is compatible with current intravital imaging approaches in the calvarial bone marrow3-5. We show that this subset of LT-HSCs resides close to both sinusoidal blood vessels and the endosteal surface. By contrast, multipotent progenitor cells (MPPs) show greater variation in distance from the endosteum and are more likely to be associated with transition zone vessels. LT-HSCs are not found in bone marrow niches with the deepest hypoxia and instead are found in hypoxic environments similar to those of MPPs. In vivo time-lapse imaging revealed that LT-HSCs at steady-state show limited motility. Activated LT-HSCs show heterogeneous responses, with some cells becoming highly motile and a fraction of HSCs expanding clonally within spatially restricted domains. These domains have defined characteristics, as HSC expansion is found almost exclusively in a subset of bone marrow cavities with bone-remodelling activity. By contrast, cavities with low bone-resorbing activity do not harbour expanding HSCs. These findings point to previously unknown heterogeneity within the bone marrow microenvironment, imposed by the stages of bone turnover. Our approach enables the direct visualization of HSC behaviours and dissection of heterogeneity in HSC niches.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Imagem Molecular , Animais , Remodelação Óssea , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Genes Reporter , Hipóxia/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Masculino , Camundongos , Oxigênio/metabolismo , Crânio/citologia , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
12.
Opt Express ; 27(24): 35797-35810, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878746

RESUMO

We present a scheme for active compensation of complex extrinsic polarization perturbations introduced into an optical system. Imaging polarimeter is used to measure the polarization state across a beam profile and a liquid crystal spatial light modulator controls the polarization of the input beam. A sequence of measurements permits determination of the birefringence properties of a perturbing specimen. The necessary correction is calculated and fed back to the polarization modulator to compensate for the polarization perturbation. The system capabilities are demonstrated on a range of birefringent specimens.

13.
Opt Lett ; 44(10): 2386-2389, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090688

RESUMO

Controlling light propagation through a step-index multimode optical fiber (MMF) has several important applications, including biological imaging. However, little consideration has been given to the coupling of fiber and tissue optics. In this Letter, we characterized the effects of tissue-induced light distortions, in particular those arising from a mismatch in the refractive index of the pre-imaging calibration and biological media. By performing the calibration in a medium matching the refractive index of the brain, optimal focusing ability was achieved, as well as a gain in focus uniformity within the field-of-view. These changes in illumination resulted in a 30% improvement in spatial resolution and intensity in fluorescence images of beads and live brain tissue. Beyond refractive index matching, our results demonstrate that sample-induced aberrations can severely deteriorate images from MMF-based systems.


Assuntos
Hipocampo/anatomia & histologia , Luz , Neurônios/citologia , Fibras Ópticas , Refratometria/métodos , Animais , Calibragem , Modelos Biológicos , Óptica e Fotônica , Ratos , Ratos Wistar
14.
Proc Natl Acad Sci U S A ; 116(19): 9586-9591, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31028150

RESUMO

Cells in the brain act as components of extended networks. Therefore, to understand neurobiological processes in a physiological context, it is essential to study them in vivo. Super-resolution microscopy has spatial resolution beyond the diffraction limit, thus promising to provide structural and functional insights that are not accessible with conventional microscopy. However, to apply it to in vivo brain imaging, we must address the challenges of 3D imaging in an optically heterogeneous tissue that is constantly in motion. We optimized image acquisition and reconstruction to combat sample motion and applied adaptive optics to correcting sample-induced optical aberrations in super-resolution structured illumination microscopy (SIM) in vivo. We imaged the brains of live zebrafish larvae and mice and observed the dynamics of dendrites and dendritic spines at nanoscale resolution.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem , Animais , Encéfalo/anatomia & histologia , Dendritos/química , Espinhas Dendríticas/química , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Peixe-Zebra
15.
Light Sci Appl ; 7: 110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30588295

RESUMO

Achieving intravital optical imaging with diffraction-limited spatial resolution of deep-brain structures represents an important step toward the goal of understanding the mammalian central nervous system1-4. Advances in wavefront-shaping methods and computational power have recently allowed for a novel approach to high-resolution imaging, utilizing deterministic light propagation through optically complex media and, of particular importance for this work, multimode optical fibers (MMFs)5-7. We report a compact and highly optimized approach for minimally invasive in vivo brain imaging applications. The volume of tissue lesion was reduced by more than 100-fold, while preserving diffraction-limited imaging performance utilizing wavefront control of light propagation through a single 50-µm-core MMF. Here, we demonstrated high-resolution fluorescence imaging of subcellular neuronal structures, dendrites and synaptic specializations, in deep-brain regions of living mice, as well as monitored stimulus-driven functional Ca2+ responses. These results represent a major breakthrough in the compromise between high-resolution imaging and tissue damage, heralding new possibilities for deep-brain imaging in vivo.

16.
Biomed Opt Express ; 9(8): 3624-3639, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338144

RESUMO

Two-photon excitation fluorescence microscopy has revolutionized our understanding of brain structure and function through the high resolution and large penetration depth it offers. Investigating neural structures in vivo requires gaining optical access to the brain, which is typically achieved by replacing a part of the skull with one or several layers of cover glass windows. To compensate for the spherical aberrations caused by the presence of these layers of glass, collar-correction objectives are typically used. However, the efficiency of this correction has been shown to depend significantly on the tilt angle between the glass window surface and the optical axis of the imaging system. Here, we first expand these observations and characterize the effect of the tilt angle on the collected fluorescence signal with thicker windows (double cover slide) and compare these results with an objective devoid of collar-correction. Second, we present a simple optical alignment device designed to rapidly minimize the tilt angle in vivo and align the optical axis of the microscope perpendicularly to the glass window to an angle below 0.25°, thereby significantly improving the imaging quality. Finally, we describe a tilt-correction procedure for users in an in vivo setting, enabling the accurate alignment with a resolution of <0.2° in only few iterations.

17.
J R Soc Interface ; 15(147)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333250

RESUMO

Microstructural deformation of elastic lamellae plays important roles in maintaining arterial tissue homeostasis and regulating vascular smooth muscle cell fate. Our study unravels the underlying microstructural origin that enables elastic lamellar layers to evenly distribute the stresses through the arterial wall caused by intraluminal distending pressure, a fundamental requirement for tissue and cellular function. A new experimental approach was developed to quantify the spatial organization and unfolding of elastic lamellar layers under pressurization in mouse carotid arteries by coupling physiological extension-inflation and multiphoton imaging. Tissue-level circumferential stretch was obtained from analysis of the deformation of a thick-walled cylinder. Our results show that the unfolding and extension of lamellar layers contribute simultaneously to tissue-level deformation. The inner lamellar layers are wavier and unfold more than the outer layers. This waviness gradient compensates the larger tissue circumferential stretch experienced at the inner surface, thus equalizing lamellar layer extension through the arterial wall. Discoveries from this study reveal the importance of structural inhomogeneity in maintaining tissue homeostasis through the arterial wall, and may have profound implications on vascular remodelling in aging and diseases, as well as in tissue engineering of functional blood vessels.


Assuntos
Artérias Carótidas/fisiologia , Tecido Elástico/fisiologia , Animais , Fenômenos Biomecânicos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos
18.
PLoS One ; 12(10): e0186846, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29065178

RESUMO

Osteocytes are the most abundant cell in the bone, and have multiple functions including mechanosensing and regulation of bone remodeling activities. Since osteocytes are embedded in the bone matrix, their inaccessibility makes in vivo studies problematic. Therefore, a non-invasive technique with high spatial resolution is desired. The purpose of this study is to investigate the use of third harmonic generation (THG) microscopy as a noninvasive technique for high-resolution imaging of the lacunar-canalicular network (LCN) in live mice. By performing THG imaging in combination with two- and three-photon fluorescence microscopy, we show that THG signal is produced from the bone-interstitial fluid boundary of the lacuna, while the interstitial fluid-osteocyte cell boundary shows a weaker THG signal. Canaliculi are also readily visualized by THG imaging, with canaliculi oriented at small angles relative to the optical axis exhibiting stronger signal intensity compared to those oriented perpendicular to the optical axis (parallel to the image plane). By measuring forward- versus epi-detected THG signals in thinned versus thick bone samples ex vivo, we found that the epi-collected THG from the LCN of intact bone contains a superposition of backward-directed and backscattered forward-THG. As an example of a biological application, THG was used as a label-free imaging technique to study structural variations in the LCN of live mice deficient in both histone deacetylase 4 and 5 (HDAC4, HDAC5). Three-dimensional analyses were performed and revealed statistically significant differences between the HDAC4/5 double knockout and wild type mice in the number of osteocytes per volume and the number of canaliculi per lacunar surface area. These changes in osteocyte density and dendritic projections occurred without differences in lacunar size. This study demonstrates that THG microscopy imaging of the LCN in live mice enables quantitative analysis of osteocytes in animal models without the use of dyes or physical sectioning.


Assuntos
Microscopia Intravital/métodos , Osteócitos/metabolismo , Crânio/citologia , Animais , Histona Desacetilases/genética , Camundongos , Camundongos Knockout
19.
Biomed Opt Express ; 8(8): 3891-3902, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28856058

RESUMO

Adjusting the objective correction collar is a widely used approach to correct spherical aberrations (SA) in optical microscopy. In this work, we characterized and compared its performance with adaptive optics in the context of in vivo brain imaging with two-photon fluorescence microscopy. We found that the presence of sample tilt had a deleterious effect on the performance of SA-only correction. At large tilt angles, adjusting the correction collar even worsened image quality. In contrast, adaptive optical correction always recovered optimal imaging performance regardless of sample tilt. The extent of improvement with adaptive optics was dependent on object size, with smaller objects having larger relative gains in signal intensity and image sharpness. These observations translate into a superior performance of adaptive optics for structural and functional brain imaging applications in vivo, as we confirmed experimentally.

20.
Sci Rep ; 7(1): 3875, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634334

RESUMO

Transplantation of a single hematopoietic stem cell is an important method for its functional characterization, but the standard transplantation protocol relies on cell homing to the bone marrow after intravenous injection. Here, we present a method to transplant single cells directly into the bone marrow of live mice. We developed an optical platform that integrates a multiphoton microscope with a laser ablation unit for microsurgery and an optical tweezer for cell micromanipulation. These tools allow image-guided single cell transplantation with high spatial control. The platform was used to deliver single hematopoietic stem cells. The engraftment of transplants was tracked over time, illustrating that the technique can be useful for studying both normal and malignant stem cells in vivo.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Imagem Molecular , Análise de Célula Única , Animais , Camundongos , Camundongos Transgênicos , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...